

SOFTWARE-PROGRAMMABLE DIGITAL PRE-DISTORTION ON

NEW GENERATION FPGAS

Baris Ozgul (Xilinx, Dublin, Ireland; baris.ozgul@xilinx.com); Jan Langer (Xilinx,
Dublin, Ireland; jan.langer@xilinx.com); Juanjo Noguera (Xilinx, Dublin, Ireland;

juanjo.noguera@xilinx.com); Kees Vissers (Xilinx, San Jose, CA, USA;
kees.vissers@xilinx.com)

ABSTRACT

In this paper we present a software programmable design

flow that facilitates the implementation and integration of

efficient digital pre-distortion (DPD) solutions on the

leading-edge FPGAs. In addition to software

programmability, another key contribution of this design

flow is the flexible partitioning of functionality among the

hardware and software components, depending on the

complexity of the DPD parameter estimation algorithm in

use. We have applied ARM-specific optimizations to the

software implementation and used Vivado High-Level

Synthesis (HLS) tool as the design tool for the

programmable logic. We present a comprehensive study

reporting the overall system performance when exploring

the partitioning of the functionality among hardware and

software. For low-complexity algorithms, we show that a

software-only solution is applicable after carrying out the

ARM-specific optimizations. For higher-complexity

algorithms, we use Vivado HLS to accelerate the time-

consuming blocks in the programmable logic, leading to a

5X speed up in the overall algorithm execution time.

1. INTRODUCTION

In third and fourth generation (3G/4G) wireless systems and

beyond, the application of techniques such as non-constant

envelope modulations, MIMO processing and carrier

aggregation plays a key role in meeting the target

requirements for the spectral efficiency, bit-error rate

(BER), cell capacity and throughput [1],[2]. However, such

techniques also result in many practical challenges in the air

interface, which require the use of more sophisticated and

flexible digital radio front-end (DFE) architectures in the

wireless base-station. For example, one of the major issues

in practice is the high peak-to-average power ratio (PAPR)

of non-constant envelope signals [3]. Due to high PAPR and

power amplifier (PA) non-linearity, the transmitted signals

get distorted. The distortion typically results in a growth in

the out-of-band (OOB) power of the signal, causing adjacent

channel interference, and increases the BER.

 Digital Pre-Distortion (DPD) is an advanced signal

processing technique which mitigates the signal distortion

mentioned above by inverting the non-linearity effects of

the PA [3]. A generic DPD system consists of a pre-distorter

that compensates for the nonlinearity effects prior to the

input of the PA and an estimator on the feedback path from

the output of the PA. The estimator updates the pre-distorter

parameters to reflect the possible changes in the operation

characteristics. Based on the modulation type, power

amplifier technology and transmission bandwidth, the

effective DPD solution can differ. Hence, it is worthwhile to

provide a flexible design methodology for DFEs that

facilitates the implementation and integration of new DPD

parameter estimation algorithms.

 Modern Field Programmable Gate Arrays (FPGAs) are

a promising target platform for the implementation of a

flexible architecture for efficient DPD solutions.

Furthermore, there are several studies showing that FPGAs

could achieve 100X higher performance and 30X better

cost-performance than traditional DSP processors in several

signal processing applications [4]. However, the key barrier

for the widespread adoption of FPGAs in signal processing

algorithms was the traditional hardware-centric design-flow

and tools. That is, the traditional use of FPGAs requires

significant hardware design experience. Recently, new

generation FPGAs that integrate the programmable logic

fabric with industry-standard embedded processors have

become available [5]. These leading-edge platforms enable

the partitioning of functionality among hardware and

software components to increase the overall system

performance. Furthermore, high-level synthesis (HLS) tools

have become available as the design tools for FPGAs, which

increase the design productivity and reduce the development

time, while producing very competitive Quality of Results

(QoR) [4].

 This paper describes a flexible and software-

programmable design flow for the implementation of the

DPD parameter estimation algorithms on the leading-edge

FPGAs. The two key contributions of this methodology are:

1) flexible partitioning of the functionality among the

hardware and software components, depending on the

complexity of the algorithm in use, 2) productivity increase

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

196

thanks to the design tools that allows the implementation

and verification of the design at the software level. We have

employed the 128-bit single instruction multiple data

(SIMD) extension for the ARM processors, called NEON,

to optimize the software implementation. Furthermore, we

have used Vivado HLS, formerly called AutoESL, as the

design tool for the programmable logic.

 The remainder of this paper is organized as follows. In

Section 2, we give information about our target FPGA

platform [5] and describe our software-programmable

design flow. In Section 3, we present the system model for a

generic DPD solution and specify the parts to be

implemented for DPD parameter estimation. The details of

our software and hardware implementations and the related

optimizations are explained in Section 4. In Section 5, we

present a comprehensive evaluation of the overall system

performance when exploring the partitioning of

functionality among the hardware and software components.

It is shown that our software-only solution is able to support

low-complexity DPD parameter estimation algorithms. For

higher-complexity algorithms, our flexible design flow

allows the hardware acceleration of time-consuming blocks

in the programmable logic, where we use the Vivado HLS

tool to generate the necessary hardware accelerators. The

conclusions can be found in Section 6.

2. TARGET PLATFORM AND

SOFTWARE-PROGRAMMABLE DESING FLOW

2.1 Software Design Flow on the Target Platform

In recent years, embedded processors and programmable

logic devices merged into one chip, enabling better

interaction between the two and subsequently a finer

grained partitioning between hardware and software. As a

recent example of such a platform, the Zynq platform from

Xilinx [5] is a hybrid computing platform that is shown in a

simplified version in Figure 1. It consists of two major parts.

First, there are two embedded ARM Cortex A9 processors

and their support infrastructure, including a cache hierarchy,

memory controllers and I/O peripherals. This in itself

represents a complete programmable embedded platform

that can be used without any FPGA programming. The two

ARM processor cores come with a SIMD extension called

NEON that provides a 128-bit wide data path.

 Secondly, the Zynq devices contain area of

programable logic. This area represents a conventional

FPGA. The major advantage of this platform is the close

interaction between FPGA and embedded processors by

means of a multitude of AXI4 communication ports. This

way, it is possible to develop software for the processor and

as necessary off-load compute-intensive tasks into the

FPGA logic.

 The following paragraph gives a short overview of our

proposed design flow for Zynq as illustrated in Figure 2.

The first step is no different from a typical software design

flow and consists of the implementation of the application in

pure software. The result of this task can be thoroughly

verified and tested. Next, a profiling step can reveal the

bottlenecks of the application, e.g. compute-intensive sub-

functions that need hardware acceleration.

 This so called hardware/software partitioning involves

not only the selection of functions that should be accelerated

but also the decision on an adequate communication

infrastructure such as DMA transfers versus memory

mapping or the order of the data packets to be transferred.

Additionally, some changes to the software are necessary in

order to call the hardware accelerator instead of the original

C function. The whole integration step involves some

manual work, but is to a large extent assisted by the tools of

the design flow.

 In a traditional design flow those functions are

implemented in a hardware description language like VHDL

Figure 2: Design Flow

Figure 1: Programmable Zynq platform

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

197

or Verilog by an experienced hardware designer.With the

availability of industrial HLS tools like Xilinx Vivado HLS

the manual hardware implementation can be replaced by an

automatic step that uses the original software functions to

generate corresponding hardware accelerators. The

conversion requires several incremental manual refinement

steps that include adding directives to the code or even

restructuring the algorithm in order to obtain an efficient

hardware implementation. During this process the code will

still be executable as software, so that the original test and

verification environment can be used. This is a big

advantage over the traditional hardware design flow.

 After the refinement is completed, the HLS tool can

generate a hardware accelerator implementation that

matches the design constraints, e.g. the required clock

frequency and the amount of hardware resources. The

accelerator design flow using the HLS tools is explained in

more detail in Section 2.2.

 Next, the integration step requires the instantiation of

communication devices that are needed to enable the

interaction between the hardware accelerator and the

processor. Finally, a system synthesis step generates a bit

stream to program the FPGA logic.

2.2 High-Level Synthesis for Programmable Logic

HLS tools raise the level of abstraction for designs in the

programmable logic, and make the time-consuming and

error-prone register-transfer level (RTL) design tasks

transparent. These tools take as their input a high-level

description of the specific algorithm to implement and

generate the RTL design for the target hardware accelerator.

Modern HLS tools accept untimed C/C++ descriptions as

their input, from which they interpret the sequential

semantics of the input/output behavior and the architecture

specifications. Based on the C/C++ code, compiler

directives and target throughput requirements, these tools

generate high-performance pipelined architectures.

Furthermore, they enable automatic pipeline stage insertion

and resource sharing to reduce hardware resource

utilization.

 The overall hardware design flow adopted in this paper

is shown in Figure 3. The first step in this flow is

restructuring a reference C/C++ code which could have

been derived from a MATLAB functional description. Here,

restructuring means doing modifications in the original code

to turn it into a format more suitable for the target

processing engine. This is similar to rearranging an

application’s code to have more efficient performance on a

DSP processor. The functional verification of the

implementation code is using traditional C/C++ compilers

(e.g., gcc) and reusing C/C++ level test benches developed

for the verification of the reference code. In addition to the

implementation code, constraints and compiler directives

(e.g., pragmas inserted in the code) are the other important

input of the HLS tool. Two essential constraints are the

target FPGA family (i.e., technology) and target clock

frequency, which obviously have an effect on the number of

pipeline stages in the generated architecture. Different types

of directives can be applied to different sections of the code.

For example, there are directives that are applied to loops

(e.g., loop unrolling), while other directives can be applied

to arrays (e.g., to partition an array into smaller arrays based

on the unrolling requirements). As another example, there

are directives to limit the instances of specific functions or

operations in order to minimize the corresponding FPGA

resource utilization.

The HLS tools take all these inputs (i.e., the

implementation C/C++ code, constraints and directives) to

generate an RTL output and to report the throughput of the

generated architecture. If the required throughput is not met,

the designer can modify the implementation C/C++ code

and/or the directives. If the generated architecture meets the

required throughput, then the RTL output is used as the

input to the Xilinx Vivado or ISE/EDK tools. The final

achievable clock frequency and number of FPGA resources

used is reported only after running logic synthesis and

place&route. If the design does not meet timing or the

FPGA resources are not as expected, the designer should

Figure 3: High-level Synthesis for Programmable Logic

Reference C/C++ Code

Implementation C/C++ Code

Manual Code Restructuring

C
/C

++
 C

o
d

e

V
e

ri
fi

ca
ti

o
n

High - Level
Synthesis Tool

RTL Output

Constraints

Directives

Xilinx
Vivado or ISE/EDK

Tools

Bitstream

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

198

modify the implementation C/C++ code and/or the compiler

directives. It is worth noting that this is an iterative design

flow where the implementation code can go through

different types of code restructuring until the design

requirements are met. A key concept to keep in mind is that

the C-level verification infrastructure is re-used to verify

any change to the implementation. In this way, verification

is not carried out at the RTL level, avoiding time-consuming

RTL simulation and hence, contributing to the reduction in

the overall development time.

3. SYSTEM MODEL FOR DPD

High PAPR is a major problem of the non-constant

envelope signals (e.g., wideband code division multiple

access and orthogonal frequency division multiple access

signals), which are widely adopted in 3G/4G and emerging

wireless systems. Due to high PAPR and PA nonlinearity,

the transmitted signals get distorted in practice. This

distortion typically results in a growth of the out-of-band

spurious emissions. A straightforward solution to this

problem is to back off the PA input so as to keep it in the

linear operating range of the PA. However, the main

disadvantage of this approach is the inefficient use of the

PA, which results in higher cost than required for the same

output power. Another solution is using DPD, which

negates the nonlinearity effects of the PA and increases the

efficiency.

As shown in Figure 4, the DPD system consists of a

pre-distorter employed prior to the amplification and a

parameter estimator on the feedback path from the output of

the PA. Please note that the illustration in Figure 4 is an

algorithmic view, which excludes the digital-to-analog and

analog-to-digital converters at the PA input and output,

respectively, as well as the RF circuitry in between.

 The parameter estimator computes the coefficients of

the pre-distorter based on the samples of the PA input and

output. In order to separate the PA behavior from the

additional analog hardware effects, the PA output yo(n) is

aligned prior to the parameter estimation. The aligned PA

output y(n) matches the amplitude, delay and phase

variations of z(n).

The pre-distorter and parameter estimator rely on a

memory model that is used to describe the non-linearity

effects of the PA. For wideband DPD applications, it is

quite common to employ Volterra series based models [3].

The most general form of non-linearity with M-tap memory

is represented using Volterra series as

where

is the contribution of the kth order Volterra kernel hk and

the input y(n). As shown in (1) and (2), the Volterra series

method results in a very complex expression. In order to

have a more practical representation, simpler models have

been derived by selecting only some of the Volterra

products in (2). For example, the memory polynomial model

is one of the well-known simplified models [3], denoted as

where all the non-diagonal Volterra series terms are set to

zero and the non-zero coefficients for the diagonal terms are

represented by akm. In (3), the second input term depends

only on the magnitude of the signal |y(n – m)|, where k

denotes the magnitude order. The model in (3) conforms to

the boundary conditions since it reduces to a linear time-

invariant system when the signal magnitude is small. PAs

are also linear for small signals.

 The memory polynomial method has been proven to

effectively model the actual PAs under typical operating

conditions. Nevertheless there have been more generalized

models derived to achieve even better performance [3]. The

following model includes both diagonal and off-diagonal

terms:

where Kd an Md are the index arrays for the diagonal terms,

and Ko, Mo and Ro are the index arrays for the off-diagonal

terms composed of a signal and a lagging magnitude. Index

arrays allow the selection of the delay taps and the

magnitude powers over a given range; rather than

implementing all the delay taps and powers as in (3),

requiring all the coefficients akm. In vector form, equation

(4) can be rewritten as

z(n) = Un A (5)

where A is the parameter vector which incorporates the

active diagonal and off-diagonal coefficients akm and âkmr,

and Un is a row vector of active diagonal and off-diagonal

terms of signal and magnitude products in (4).

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

199

 The parameter estimator finds the coefficients in A,

which are then used by the pre-distorter. The PA inputs z(n)

and the aligned PA outputs y(n) are captured to be able to

estimate the coefficients. After capturing L samples of z(n)

and L + additional samples of y(n) (number of additional

samples is based on the delay range adopted in (4)), the

relation in (5) can be expressed in matrix form as

Z = UA (6)

where Z = [z(n) z(n - 1) z(n – L + 1)]
T
, A is the vector to

be estimated, U = [Un
T
 Un-1

T
 Un-L+1

T
]

T
, Un is the row

vector in (5) and (.)
T
 is the transpose operation. The least

squares solution to (6) can be found by multiplying each

side with U
H
 (i.e., the conjugate transpose of U), leading to

W = VA (7)

where W = U
H
Z and V = U

H
U. Given that the number of

active coefficients is NA, W is a vector of (NA x 1) and V is a

matrix of size (NA x NA). The solution to (7) can be found as

A = V
-1

W. (8)

The VW computation module in Figure 4 is for the

computation of V and W in (7). The solution in (8) is found

by the A computation module.

In this paper, we consider the efficient implementation

of alignment and parameter estimation blocks (i.e., colored

blocks in Figure 4). In a DPD system, these blocks are

employed to update the pre-distorter coefficients when there

are major changes in the signal characteristics and/or power

dynamics. Hence, unlike the pre-distorter, they do not

operate at the sample rate. Here our main goal is to reduce

the overall coefficient update time. In this way, the DPD

solution reacts faster to the changing conditions, leading to

more effective pre-distortion correction. Furthermore, faster

updates enable the support of more complex DPD solutions,

using larger number of active coefficients NA. With shorter

update times, it is also possible to run the same design

multiple times in a serial fashion, in order to update pre-

distorter coefficients of different data paths. This approach

allows the implementation of efficient DPD solutions for

multi-antenna base-stations.

 In the next section, we give the details of our software

programmable design flow, which facilitates the

implementation of efficient DPD coefficient update

solutions for modern wireless transmitters.

4. SOFTWARE AND HARDWARE

IMPLEMENTATION FOR DPD

4.1 Software Implementation for DPD

The DPD coefficient update software was targeted as a

stand-alone solution running on one of the two ARM

processors at 800 MHz. Without an operating system, the

application has direct access to all hardware devices. This

enables a very accurate profiling step with deterministic

results. In this subsection, we first give an overview over the

test environment we employed. Then we present the

profiling step and the conclusions evolved from that and

finally we propose a software optimization based on the

ARM’s NEON engine that can significantly reduce the

update time.

 During the software development process a test

environment has been used that reads the z(n) and y(n)

samples from a reference vector and writes a set of

coefficients. Subsequently, the coefficients are compared to

a reference implementation written in Matlab that visualizes

the difference between both sets of coefficients. The

software profiling has been performed on two levels. First,

the software was run on a standard x86 server and gprof was

used to get a first estimate of the expected bottlenecks.

Second, the software ran on the ARM processor and,

depending on the gprof results, the interesting sub-functions

have been instrumented with calls to the global CPU timer

of the Zynq platform. This timer runs at half the CPU

frequency, hence giving excellent resolution with the

overhead of only a few cycles.

The profiling results of the three main function blocks

running on the ARM processor are given in Table 1. From

Table 1: Results of initial profiling

Function Time %

Alignment 29.62ms 7.9

VW computation 336.40ms 89.9

A computation 8.09ms 2.2

Pre-distorter PA

x(n) z(n) yo(n)

Alignment

y(n)

Parameter Estimator

A Compute VW Compute

C
o

ef
fi

ci
en

ts
 (

A
)

Figure 4: Algorithmic view of DPD

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

200

the table it can be seen that the VW computation is the

bottleneck of the application. It consumes 90% of the

overall update time, making it a prime candidate for

hardware acceleration. Before profiling, we expected the

solver used for A computation in Figure 4 would consume a

larger part of the update time, because in contrast to the

other functionality it is performed in double precision

floating point. However, the ARM’s floating point unit

solved the task very efficiently.

 Before actually implementing a hardware accelerator

for the VW calculation, potential software optimization

possibilities have been examined. The SIMD NEON engine

of the ARM processor has a 128-bit wide data path. Since

the VW computation works on 64-bit fixed-point data types,

two parallel computations can be carried out in parallel. In

Figure 5, one step of the VW, the computation of the W

vector is presented in both pure C code and with the ARM

NEON instructions applied. Instead of using low-level

assembly instructions to access the NEON engine, the

compiler provides a set of function-like wrappers for the

instructions. These wrappers are called intrinsics and they

provide type-safe operations, while allowing the compiler to

automatically schedule the C variables to NEON registers.

Furthermore, every compiler for ARM processors is

required to define the macro __ARM_NEON__ in case the

target machine has a NEON engine. That way, a single

source code can be used for both NEON and non-NEON

implementations.

 The purpose of the code is the scalar multiplication of

complex number s with the conjugate of complex vector u

and adding the result to complex vector W. In Figure 6, a

visualization of the NEON registers is displayed. It is

derived from the non-NEON C code. The two parallel

operations compute the real and imaginary part of W

concurrently. The operands for the imaginary part are

swapped to allow a more efficient loading of the NEON

registers inside the loop.

 After applying the intrinsics in the C code, we expect a

speed-up factor of about two, because two operations are

calculated in parallel. Additionally to this speed-up, there

can be a benefit in the fact that during the NEON operations

the normal ARM processor is free and can continue

processing simple non-NEON instructions like loop

conditions and pointer increments while the NEON engine

runs in parallel.

4.2 High-Level Synthesis for DPD

As shown in Table 1, the so-called VW computation in

Figure 4 is the most time-consuming task of the parameter

estimation process. In order to improve the overall

parameter update time, we have implemented a VW

accelerator using the Vivado HLS tool. The VW accelerator

takes the z(n) and y(n) samples as its inputs, constructs the

U matrix of size (L x NA) in (6) and, then computes the W

vector of size (NA x 1) and V matrix of size (NA x NA) as its

outputs. Our accelerator has a programmable architecture

such that it supports a different number of active

coefficients NA and allows the flexible selection of diagonal

and off-diagonal terms in the generalized memory model as

in (4). Hence, it is possible to support different nonlinear

models using the same VW accelerator. In addition to using

the design flow in Figure 3, the designer can make new

changes in the existing C++ code and/or the compiler

#ifndef __ARM_NEON__

void computeW (CINT64 *W,

 CINT32 const *u,

 CINT16 s, int N_A)

{

 for (int i = 0; i < N_A; ++i) {

 // conjugated complex multiplication

 W[i].real += (int64_t)u[i].real*s.real

 + (int64_t)u[i].imag*s.imag;

 W[i].imag += (int64_t)u[i].real*s.imag

 - (int64_t)u[i].imag*s.real;

 }

}

#else // defined __ARM_NEON__

void computeW (CINT64 *W,

 CINT32 const *u,

 CINT16 s, int N_A)

{

 // load s.real and negate second lane

 // that we avoid subtraction below

 int32x2_t sr;

 sr = vset_lane_s32(s.real,sr,0);

 sr = vset_lane_s32(-s.real,sr,1);

 int32x2_t si = vdup_n_s32(s.imag);

 for (int i = 0; i < N_A; ++i) {

 // load operands

 int64x2_t w = vld1q_s64((int64_t *)(W+i));

 int32x2_t ur = vld1_s32((int32_t *)(u+i));

 int32x2_t ui = vrev64_s32(ur);

 // conjugated multiplication

 w = vmlal_s32(w,sr,ur);

 w = vmlal_s32(w,si,ui);

 // store result

 vst1q_s64((int64_t *)(W+i),w);

 }

}

#endif

Figure 5: Use of NEON instructions in the C code.

Figure 6: Visualization of the NEON registers for computing

W.

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

201

directives to generate a brand-new accelerator in much

shorter time than required by a hand-coded RTL design. In

the remainder of this section, we give specific examples of

code re-writing and compiler directives that we have used

for the VW accelerator. Furthermore, we present

productivity results where we compare final FPGA

resources and the development time.

As shown in Figure 3, functional verification of the

design is done in the C level. We have slightly modified the

existing DPD parameter estimation code for our C++ test

bench to validate our implementation code for VW

computation.

The designer can rewrite the C/C++ code to more

efficiently utilize specific FPGA resources, and hence,

improve timing and reduce area. There are two very specific

examples of this type of optimizations: 1) bit-width

optimizations; and 2) efficient use of embedded DSP blocks

(i.e., DSP48s). For example, the reference C/C++ code is

normally written using built-in C/C++ data types (e.g.,

short, int), whereas the actual design can be based on fixed-

point data types having word-lengths which are not integer

multiples of the byte size. Here the HLS tool supports C++

template classes that can represent integer data types with

arbitrary bit-width. For VW computation, we have

leveraged the use of these template classes, hence reducing

FPGA resources and minimizing the impact on timing. The

snippet of C++ code in Figure 7 is a good example to show

code re-writing, bit-width optimization and the efficient use

of DSP48s. The example is focusing on the complex

multiplication, which is widely used by the VW

computation. A standard complex multiplication carries out

four real multiplications, which requires the use of four

different multipliers in a fully-pipelined implementation.

However, as shown in Figure 7, equivalent functionality can

be achieved by rewriting this code rather to use three

multipliers (to employ less DSP48 blocks), at the expense of

three additional pre-adders and one-bit increase in the

multiplier word-length. In Figure 7, we show the

multiplication of two complex numbers with 32-bit real and

imaginary parts, using three multipliers. As it can be seen

between lines 18-20, the C++ template class is used to

declare 33-bit pre-adders. Furthermore, based on lines 21-

23, the HLS tool generates three 33x32-bit multipliers, each

giving a 65-bit result.

The original reference C++ code for the complex

multiplication is using four multipliers, each multiplying

two 32-bit numbers. Please note that the original code uses

built-in C/C++ data types and the 32-bit inputs should be

casted to 64-bit integer to avoid loss of information (because

the result is a 64-bit integer). However, based on this code,

the HLS tool generates four 64x64-bit multipliers, which are

obviously much more expensive in terms of DSP48s. On the

other hand, by using the C++ template classes in Figure 7

for the data types, the C++ code functionality works fine

without any casting, while the HLS tool generates only three

33x32-bit multipliers, each using four DSP48s.

The “CMULT32” function in Figure 7 is inlined and

used in different parts of the code. Here it is feasible to limit

the instances of multiplications to three, to be able to share

the same multipliers throughout the code. The snippet of

C++ code in Figure 8 shows how this can be achieved by

adding a compiler directive.

The main reason to implement a VW accelerator is to

reduce the time used for VW computation and, hence, to

improve the overall DPD parameter estimation time. For

this purpose, the loops in the C++ code need to be pipelined

and also unrolled if possible. Using the HLS tool, we have

verified that the most time-consuming loop in our

implementation is the V computation loop. We have

unrolled this loop by a configurable factor which is

predefined as a C macro in the compiler options. Depending

on the unrolling factor, the designer can choose between

better resource sharing and shorter computation time. The

compiler directives that control the loop unrolling are shown

in Figure 9. On line 6, based on the unrolling factor,

instances of the multiplication operation can be set more

than three, compared to Figure 8. This is because three

multipliers cannot be shared in the case of loop

parallelization. Furthermore, on line 9, we partition the array

1: typedef struct {

2: ap_int<32> real;

3: ap_int<32> imag;

4: } CINT32;

5:

6: typedef struct {

7: ap_int<64> real;

8: ap_int<64> imag;

9: } CINT64;

10:

11: CINT64 CMULT32(CINT32 x, CINT32 y)

12: {

13: CINT64 res;

14: ap_int<33> preAdd1;

15: ap_int<33> preAdd2;

16: ap_int<33> preAdd3;

17: ap_int<65> sharedMul;

18: preAdd1 = (ap_int<33>)x.real + x.imag;

19: preAdd2 = (ap_int<33>)x.imag - x.real;

20: preAdd3 = (ap_int<33>)y.real + y.imag;

21: sharedMul = x.real * preAdd3;

22: res.real = sharedMul - y.imag * preAdd1;

23: res.imag = sharedMul + y.real * preAdd2;

24: return res;

25: }

Figure 7: Optimized complex multiplication

1: void vw_accelerator_top(

2: ap_axiu<BW,x,y,z> InData[INSIZE],

3: ap_axiu<BW,x,y,z> OutData[OUTSIZE],

4: int N_A, int L,)

5: {

6:#pragma AP allocation instances=mul limit=3 operation

7: <function body>

8: }

Figure 8: Directive to limit instances of operations

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

202

that stores V values (mapped to block RAMs after RTL

synthesis) by the unrolling factor, to avoid access problems.

Lines 14 and 15 show how the pipelining and unrolling

directives are applied, respectively.

Our implementation uses single input single output data

interface, for simplicity in the system architecture. The input

and output data parameters are declared as arrays. In the

input data array, complex capture samples z(n) and y(n) are

ordered in an interleaved fashion. The output data array

contains the NA complex elements of W and, consecutively,

the complex elements in V. The HLS tool supports a C-level

macro that turns these arrays into high-speed streaming

interfaces. Furthermore, different type of macros can be

used to assign a low-throughput memory-mapped

communication interface to the top-level configuration

parameters, such as NA or L. A snippet of the C++ code that

shows the use of these macros is available in Figure 10. As

shown in lines 2 and 3, the input and output data arrays are

declared using a template structure. Here the template

parameters allow the designer to set the bit-width of

different fields in the streaming protocol at the time of

variable declaration. For example, “BW” is a previously-

defined integer constant to set the bit-width of the streaming

data samples. Likewise, “x”, “y” and “z” are used to set the

bit-width of other fields in the streaming protocol.

In Figure 11, we show how the VW accelerator design

generated using the Vivado HLS tool evolves over time.

Please note that the first two weeks of the development time

is spent for the integration of the Vivado HLS-generated

accelerator to the processor subsystem. The accelerator used

during this time is based on the original reference C++ code

with minor modifications. The C++ test bench for functional

verification was also set up during the same time frame.

Figure 11 shows that the actual accelerator optimization

process takes less than a week. For example, the massive

reduction in the number of DSP48s is based on the bit-width

optimizations, code rewriting for complex multiplication

and the application of compiler directives to limit the

multiplication instances, as discussed earlier (see Figures 8

and 9). The bit-width optimizations also played an important

role in reducing the number of flip-flops (FFs). The results

obtained in the end of acceleration optimization phase are

very similar to the hand-coded RTL results.

As discussed earlier, V computation is the most time-

consuming part of the VW accelerator. Hence, during our

accelerator exploration, we have implemented faster

accelerators by unrolling the V loop. The last two data

points in Figure 11 are for V loop unrolling by 2 and 4. The

changes applied for V loop unrolling in Figure 9 confirm the

size increase in Figure 11. For example, multiplication

instances for the complex multiplier need to be increased by

the unrolling factor. As a result, the number of DSP48s

needed for the complex multiplication increases by the same

factor. The accelerator exploration using Vivado HLS takes

only a few days, whereas the traditional RTL design

Figure 11: Design evolution vs. development time

1: void vw_accelerator_top(

2: ap_axiu<BW,x,y,z> InData[INSIZE],

3: ap_axiu<BW,x,y,z> OutData[OUTSIZE],

4: int N_A, int L,)

5: {

6:#pragma AP allocation instances=mul

 limit=3*UNROLL_FACTOR operation

7: <function body>

8: CINT64 Varray[VSIZE];

9: #pragma AP array_partition variable=Varray cyclic
factor=UNROLL_FACTOR dim=1

10: <function body>

11: label_compute_V:
12: for (int i=0; i < VSIZE; ++i)

13: {

14:#pragma AP pipeline

15:#pragma AP unroll factor=UNROLL_FACTOR

16: <loop body>

17: }

18: <function body>

19: }

Figure 9: Loop unrolling

1: void vw_accelerator_top(

2: ap_axiu<BW,x,y,z> InData[INSIZE],

3: ap_axiu<BW,x,y,z> OutData[OUTSIZE],

4: int N_A, int L,)

5: {

6: // Streaming interfaces

7: AP_BUS_AXI_STREAMD(InData, BUS_INDATA);

8: AP_BUS_AXI_STREAMD(OutData, BUS_OUTDATA);

9: // Memory-mapped interface

10: AP_INTERFACE_REG(N_A, ap_none);

11: AP_INTERFACE_REG(L, ap_none);

12:

13: AP_BUS_AXI4_LITE(N_A, AXIlite);

14: AP_BUS_AXI4_LITE(L, AXIlite);

15: <function body>

16: }

Figure 10: Example of accelerator interface

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

203

requires much longer time. In the case of Vivado HLS, the

effort can be as simple as changing a few compiler

directives as shown in Figure 9.

Our implementation code in this paper allows different

configurations for VW computation, each supporting a

different value for maximum number of pre-distorter

coefficients. Please note the number active coefficients NA

in (6) is a run-time parameter of the accelerator, as shown in

Figure 10 (see lines 4 and 10), which is bounded by the

maximum number of coefficients. We use a C macro in the

compiler options for the configuration selection, which

defines the maximum number of coefficients. For simplicity

in the presentation, Figure 11 shows the accelerator results

for the first configuration only, supporting the least number

of coefficients. However, at the end of the design process,

we have generated the accelerators for the other two

configurations as well. All accelerators are successfully

running on the Zynq board.

4.3 Integration of Hardware and Software Components

The communication between the processor subsystem and

hardware accelerator is based on the Advanced eXtensible

Interface (AXI) protocol [6], which is part of ARM AMBA,

a family of micro controller buses first introduced in 1996.

The second and most-recent version of AXI is AXI4, which

is included in AMBA 4.0 released in 2010. Our design uses

the Xilinx AXI interconnect core IP [6], which is able to

connect one or more AXI memory-mapped master devices

to one or more memory-mapped slave devices. As shown in

Figure 12, we have used the AXI interconnect core to

connect AXI4 Lite masters to slaves. The AXI4 Lite is a

light-weight, single transaction memory mapped interface.

When connected to AXI4 Lite slaves, the AXI interconnect

core stores the transaction IDs and restores them in the

response transfers. Furthermore, it controls the transactions

and does not propagate any illegal transaction to the AXI4

Lite slave.

 The AXI FIFOs in Figure 12 are for the input and

output data samples of the accelerator, which are connected

to the corresponding AXI4 stream interfaces of the

accelerator generated as shown in Figure 10. The AXI4 Lite

slave on the accelerator is for the VW configuration

parameters. The AXI4 Lite interface for the accelerator is

generated in the C level, as illustrated in Figure 10.

5. SYSTEM PERFORMANCE

In this section, we compare the coefficient update times for

three specific VW configurations, discussed at the end of

Section 4.2. These three configurations will be called C1,

C2 and C3 from now on, which are ordered according to the

increasing computational complexity. Here C1 denotes the

simplest configuration, supporting the lowest value for the

maximum number of pre-distorter coefficients. The more

complex architectures correspond to the DPD solutions with

increasing maximum number of coefficients. Compared to

C1, C2 and C3 support 1.5X and 2.3X more coefficients,

respectively.

 There are four different designs implemented for each

of these configurations: 1) Software-only design optimizing

VW computation using NEON instructions (VWNeon), 2)

Software + VW accelerator (VWAx1), 3) Software + VW

accelerator unrolling the V computation loop by two

(VWAx2), 4) Software + VW accelerator unrolling the V

computation loop by four (VWAx4).

 All the designs are implemented based on the software-

programmable flow explained in Section 2. In designs

VWAx1, VWAx2 and VWAx4, only the Alignment and A

Computation blocks (see Figure 4) are running on the

processer subsystem since the VW computation is carried

out by the hardware accelerator. Unrolling of the V

computation loop is achieved using compiler directives, as

discussed in Section 4.2 (see Figure 9).

 Target clock frequency for our designs is 166 MHz.

The area results in Figure 11 have also been obtained at 166

MHz. This clock frequency meets our current system

requirements. However, it is possible to increase the target

Figure 12: Integration of processor subsystem with the

hardware accelerator

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

204

clock frequency constraint in Vivado HLS, in order to

generate faster accelerators.

 Processing times for different configurations and

designs are compared in Table 2. Here the results for the

original software implementation of C1 (previously shown

in Table 1) are also included, to compare them to the results

for “C1/VWNeon”. The total update time for

“C1/VWNeon” meets our current timing requirements

thanks to the NEON optimizations. However, depending on

the transmitter specifications, the accelerated designs for C1

(with/without loop unrolling) can also be preferable to use.

For example, in a multi-antenna base station, it is possible to

run an accelerated design more than once (computing pre-

distorter coefficients for a different antenna each time), and

attain an update time similar to 254.64 ms.

 For more complex DPD solutions, the designs

“C2/VWAx1” and “C3/VWAx2” result in update times

comparable to “C1/VWNeon”. Hence, based on our current

requirements, it is more feasible to use these designs for C2

and C3. This is because they use less hardware resources

compared to the accelerated designs with further loop

unrolling. However, further loop unrolling can be beneficial

under different requirements, as in the case of multiple

antennas discussed above.

Table 2: Comparison of processing times

Architecture

/Design

Align.

(ms)

VW

(ms)

A

(ms)

Total

Time

(ms)

C1/original SW 29.62 336.40 8.09 374.11

C1/VWNeon 29.62 216.93 8.09 254.64

C1/VWAx1 29.62 63.14 8.09 100.85

C1/VWAx2 29.62 41.20 8.09 78.91

C1/VWAx4 29.62 32.34 8.09 70.05

C2/VWNeon 29.62 449.90 15.06 494.58

C2/VWAx1 29.62 130.95 15.06 175.63

C2/VWAx2 29.62 80.61 15.06 125.29

C2/VWAx4 29.62 58.65 15.06 103.33

C3/VWNeon 29.62 1004.5 61.72 1095.89

C3/VWAx1 29.62 292.39 61.72 383.73

C3/VWAx2 29.62 167.92 61.72 259.26

C3/VWAx4 29.62 110.72 61.72 202.06

 In Table 2, it is shown that the accelerated designs

using an unrolling factor of four can result in up to 5X

improvement in coefficient update times, compared to

NEON-optimized solution (e.g., “C3/VWAx4” vs.

“C3/VWNeon”). For all configurations, it is also worth

noting that unrolling V computation loop by four results in

less significant time improvement, compared to unrolling by

two (e.g., “C3/VWAx4” vs. “C3/VWAx2”). This is because

the time spent for the other functions of the VW accelerator

becomes more dominant in the total update time.

6. CONCLUSIONS

In this paper, we have presented a software-programmable

design flow for DPD targeting new generation FPGAs. Our

design flow allows the flexible partitioning of functionality

among hardware and software components, and increases

the productivity by reducing the time for implementation

and system integration. We have used the ARM NEON

instructions to optimize the software implementation and

employed Vivado HLS as the HLS tool for the

programmable logic. By taking into account three different

DPD architectures, we have implemented several designs

trading off faster pre-distorter coefficient update times

versus the size of the design. We have tested our designs

successfully on the target platform. Our flexible design flow

facilitates the generation of effective DPD solutions for

modern wideband and multi-antenna transmitters.

6. ACKNOWLEDGMENT

The authors would like to thank Vincent Barnes, Dave

Fraser, Hemang Parekh, Colin Stirling and Chris Dick from

Xilinx, Inc. for their valuable comments and cooperation.

8. REFERENCES

[1] E. Dahlman et al., 3G Evolution: HSPA and LTE for Mobile

Broadband, 2nd ed., Academic Press, 2008.
[2] D. Astély et al., “LTE: the evolution of mobile broadband,”

IEEE Communications Magazine, vol. 47, pp. 44-51, 2009.
[3] D.R. Morgan et al., “A generalized memory polynomial

model for digital predistortion of rf power amplifiers,” IEEE
Transactions on Signal Processing, vol. 54, pp. 3852-3860,
2006.

[4] Berkeley Design Technology, Inc., “High-Level Synthesis
Tools for Xilinx FPGAs,” White paper 2010. [Online]
Available:
http://www.xilinx.com/technology/dsp/BDTI_techpaper.pdf

[5] Xilinx, Inc., Zynq-7000 Extensible Processing Platform
Product Brief. [Online] Available:

 www.xilinx.com/publications/prod_mktg/zynq7000/Product-
Brief.pdf

[6] Xilinx, Inc., AXI Reference Guide UG761 (v13.1), 2011.

Proceedings of SDR-WInnComm 2013, Copyright © 2013 Wireless Innovation Forum All Rights Reserved

205

http://www.xilinx.com/technology/dsp/BDTI_techpaper.pdf
http://www.xilinx.com/publications/prod_mktg/zynq7000/Product-Brief.pdf
http://www.xilinx.com/publications/prod_mktg/zynq7000/Product-Brief.pdf

